排序
【人工智能】PlantAIM: 一种融合全局注意力与局部特征以提升植物病害识别能力的新型基准模型
PlantAIM是一种新型基准模型,旨在通过融合全局注意力机制与局部特征提取能力,提升植物病害识别的性能。该模型结合了视觉Transformer(ViT)和卷积神经网络(CNN)的优势,通过双骨干网络和全...
【人工智能】用于作物病害识别的双分支协同学习网络
DBCLNet通过双分支协作和特征级联设计,显著提升了多类别农作物病害的识别性能,并在模型复杂度与精度间取得平衡。未来可进一步优化特征提取策略,并扩展至更复杂场景验证实用性。
【人工智能】对LSRFormer模块的理解——遥感图像语义分割
我阅读了LSRFormer模块论文,它融合ViT和CNN优势,通过Split Windows分割特征图,采用LR-SA(长程自注意力)和SR-SA(短程自注意力)分别建模全局依赖和局部细节,并结合MSC-FFN增强多尺度特征...
【人工智能】软著申请&模型改进-2025年3月9日人工智能组会总结
本文介绍了基于UNetFormer的城市绿地智能提取系统开发与实践经验。通过重构模型预测模块实现单图推理功能,结合Flask框架搭建Web应用,完成从算法到实际软件的转化。在模型优化方面,提出MSC-FF...
【人工智能】MSHFormer:一种具有边界增强的多尺度混合Transformer网络,用于高分辨率遥感图像建筑物提取
我总结了论文的MSHFormer模型,这是一种用于高分辨率遥感图像建筑物提取的多尺度混合Transformer网络。该模型通过多尺度局部感知模块、全局感知模块、边界增强模块和分组对齐特征融合模块,有效...